

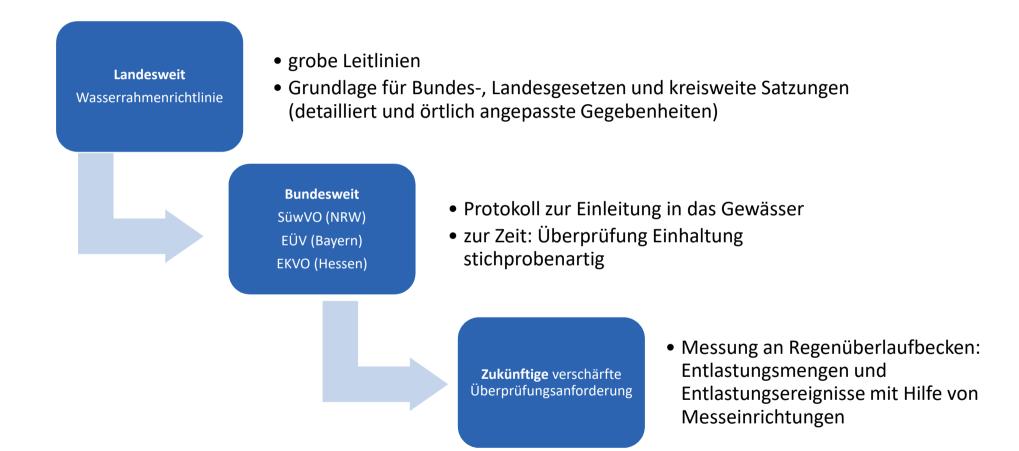
(Durchfluss-, Überfall- und Entlastungsmengenmessung)

HST Anwendertreffen 16.11.2021

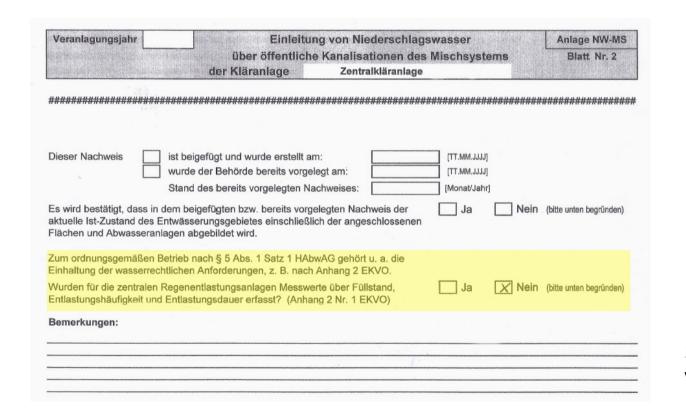
Agenda

1. Grundlagen

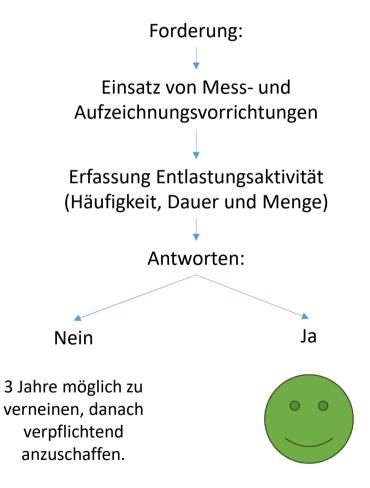
- 1.1 Gesetzliche Grundlage
- 1.2 Was bedeutet EMA?
- 1.3 Portfolio EMA-Systeme
- 1.4 Ihre Vorteile
- 1.5 Transparenz: Nachvollziehbarkeit, Genauigkeit und Plausibilität
- 1.6 Grundlagen zur Berechnung


2. Systemkomponenten

- 2.1 Messtechnik
- 2.2 Genauigkeitsverbesserung Messsystem
- 2.3 Messdatenerfassung und Übertragung
- 2.4 EMA-Prüfstand
- 2.5 Praxisanwendungen
- 2.6 Auslegung EMA

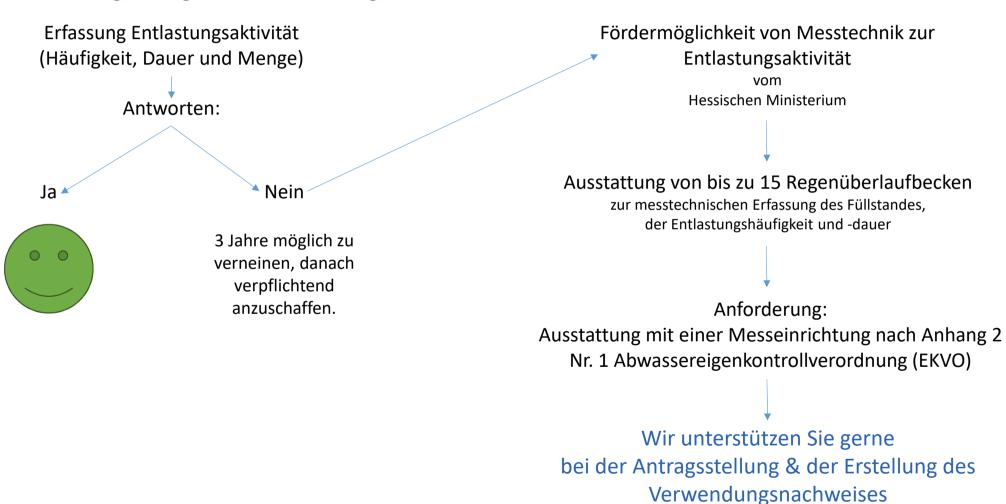


1.1 Gesetzliche Grundlage



1.1 Gesetzliche Grundlage

Anwendungsfall: Eigenkontrollverordnung - Hessen



HST SYSTEMTECHNIK

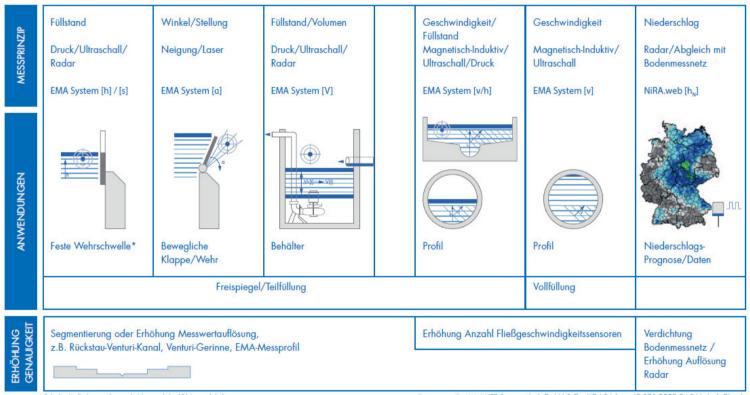
1.1 Gesetzliche Grundlage

Anwendungsfall: Eigenkontrollverordnung - Hessen

HST SYSTEMTECHNIK

1.2 Was bedeutet EMA?

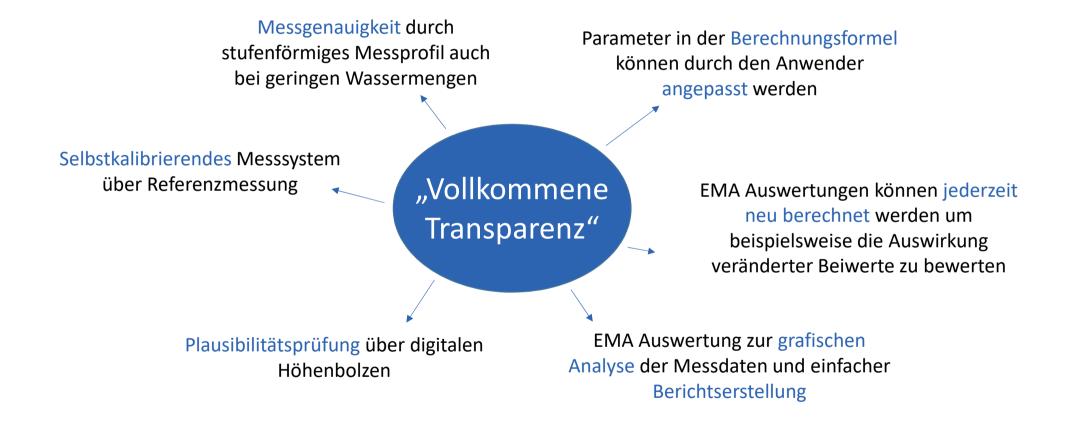
EMA-System (Elektronische Mengen Auswertung)


Die optimale Lösung zur exakten Ermittlung und Auswertung von...

- ...Überlauf bzw. Entlastungsmengen und -ereignissen an festen Wehrschwellen, beweglichen Klappen/Wehren und in Entlastungsleitungen
- ...Durchfluss- bzw. Ablaufmengen in Kanälen, Gerinnen und Rohrleitungen

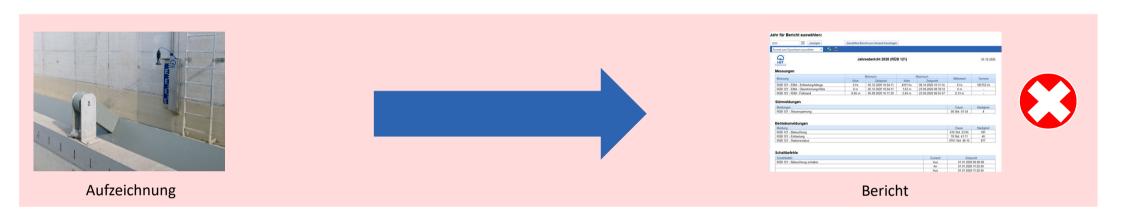
1.3 Portfolio EMA-System

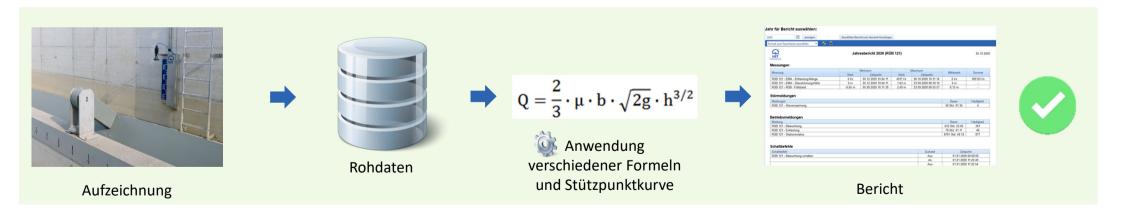
Für jede Anforderung und Aufgabe die passende Lösung

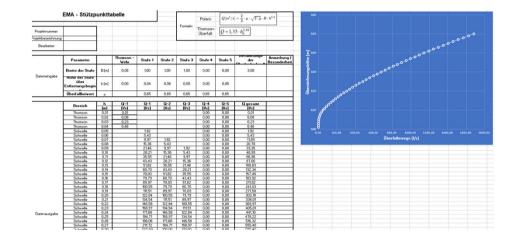


Welche
Vorteile
hat ein
EMA-System?

Fragen zum Produkt? HST Systemtechnik GmbH & Co. KG | Telefon +49 291 9929 0 | E-Mail info@hst.de




1.4 Ihre Vorteile



1.5 Transparenz: Nachvollziehbarkeit, Genauigkeit und Plausibilität

1.6 Grundlagen zur Berechnung einschließlich Herleitung

EMA-INBETRIEBNAHMEPROTOKOLL

Allgemeine Pr	ojektinformatio	onen					HC.	
Projekt-Nr./Be Projektleiter: Bauwerkstyp/						-	SYSTEMTEC	CHNIK
Messstellenbe	zeichnung:					Datum:		
Skizze Messst	elle			Beschaff	fenheit Sch	welle		
	Mindestabs Sensor - Ü berfall 3x max. Ü berfa	schwelle		Schwelle	enlänge:			m
UK Sensor Beginn Entlastung	100	% / 20 mA hwand bei gerad OK Sohw		Profil: 1	-0.64 0.49_0	51 0,500,55	0,650,73 elg	gene Skizze
		Del EMA- UK Dreie	Messprofit ckausschnitt	Tauchwa	and vorhand	den:	ja	nein
Sohle Becken/Gerlin	2)	4mA		Schlitzau	500.00	tmaß (e):		mm
				П	DIEI	ie (b).		
Parametrierur	ng Radar-Messe	einrichtung						
Anwendung	Medientyp:		Flüssigkeit			Wax-Abdeich 🖒		Distanc A
	Anwendung:		Pegelmess	ungen in G	Gerinnen			
Abgleich	Distanz A für M	Max-Abgleich:	0,00) m]	Mn-Algiekt 🖒		Distance
	Distanz B für N	/lin-Abgleich:		m] 1)	homonum		SERVICE
Ermittlung exe	aktes Niveau fü	r Beginn Entlas	stung (z.B. ü	ber Schlau	uchwaage)			
Niveau Beginn Entlastung:				m	2) (mit 3 Nachkommastell			
resultierender	max. Erfassung	sbereich hü		m	3)	ausreich	end?	
Simulation En	tlastungsbegini	n und Entlastur	ngsereigniss	e				
Simulation übe	er fest positioni	ertes Simulatio	nsbelch aus	Metall	Prüfung Ar	nzeige Füll	stand [m]	
Simulations-Ni	iveau	hū [mm]	Zeitpun	kt	VEGA-Soft	ware Le	itsystem	OK?
Niveau Beginn	Entlastung	0 mm		Uhr	n	1	m	
Niveau 0,5 x h	ü max	mm		Uhr	n	1	m	
Niveau hū max	K	mm		Uhr	n	1	m	
Qualitätssicherung								
erfolgte durch								
		Name			Datum	Ur	nterschrift	

EMA-Systemkomponenten

2.1 Messtechnik

Bestandteile: 1. Panel

2. digitaler Höhenbolzen

2.1 Messtechnik

Bestandteile: 1. Panel

2. digitaler Höhenbolzen

Welche Vorteile hat das Panel?

Vorteile:

- 1. Füllstand simulieren durch das Simulationsblech
- 2. Feste Messstellenposition
- 3. Nivellierlatte mit einer E Teilungsoptik und Höhenkotenmarkierung
- 4. Einfache Montage und minimaler Wartungsaufwand

HST CYCTEMATECHININ

2.1 Messtechnik

Bestandteile: 1. Panel

2. digitaler Höhenbolzen

Digitaler Höhenbolzen in der Wasserwirtschaft:

Bedeutung Höhenbolzen: amtlich bemessene Höhe die als Referenzwert für das Bezugsniveau bzw. zur Kalibrierung der Sensorik dient.

2.1 Messtechnik

Bestandteile: 1. Panel

2. digitaler Höhenbolzen

Welche Vorteile hat der digitale Höhenbolzen?

Vorteile:

- Beständige Referenzmessung zur Plausibilitätsprüfung
- 2. Nicht mit dem Medium in Kontakt, geschützt vor Außeneinwirkungen
- 3. Einfache Montage und minimaler Wartungsaufwand

HST SYSTEMTECHNIK

2.2 Genauigkeitsverbesserung Messsystem

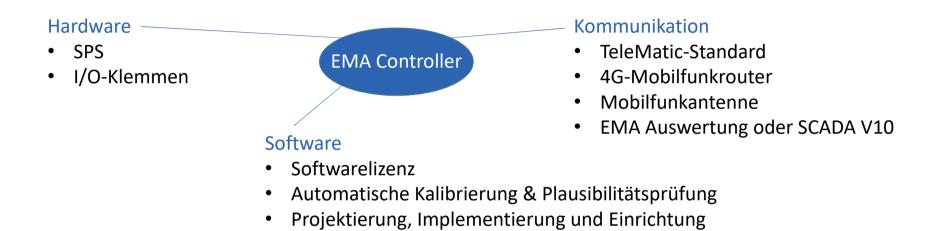
Bestandteile: 1. gerades Messwehr

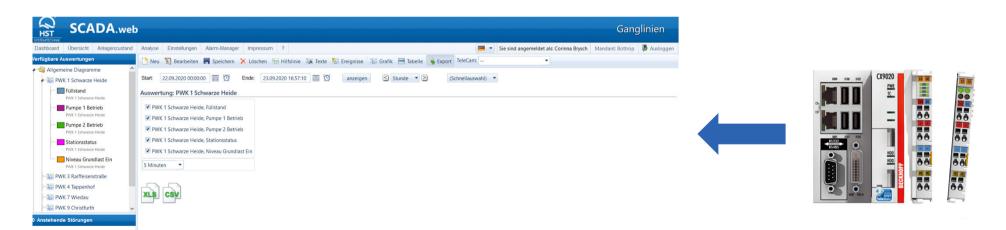
2. Stufen Messprofil

3. kalibriertes Messprofil

4. Sonderanfertigungen

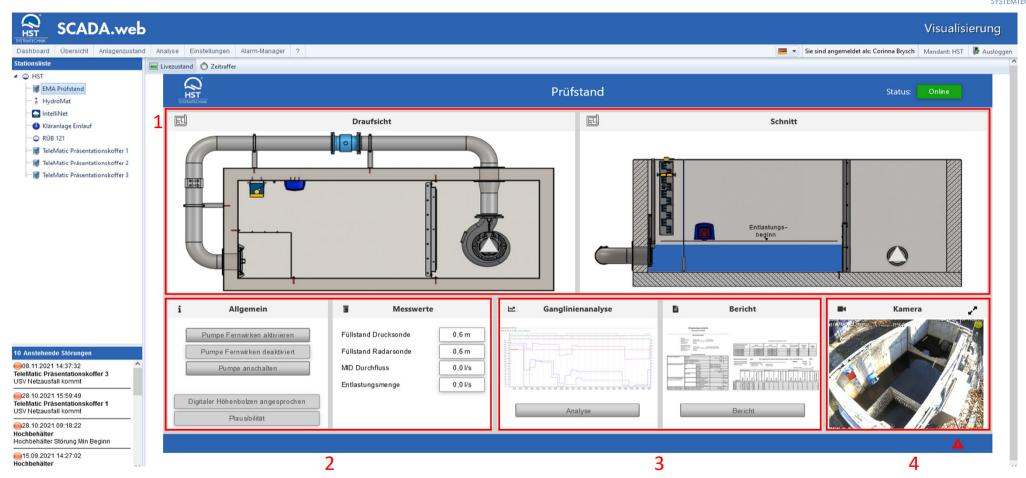
Anwendungsbeispiele:



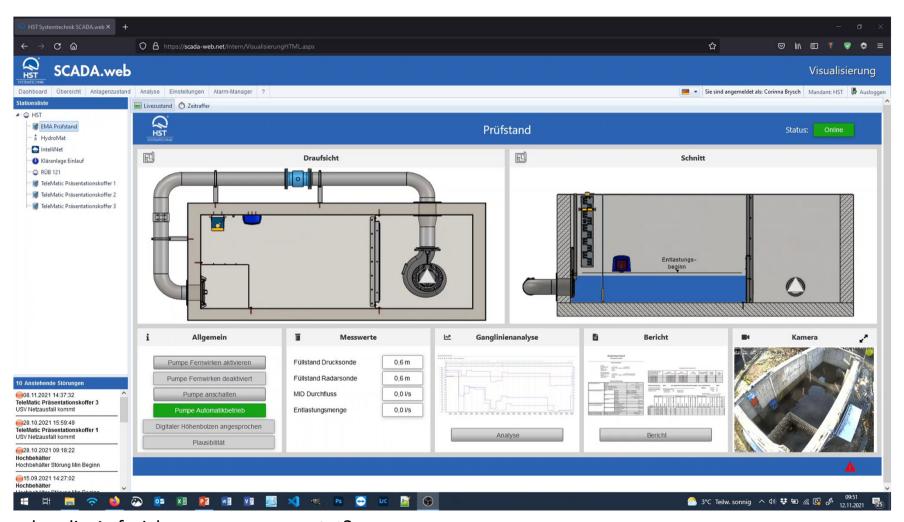


"Scharfkantige Dreieckwehre [Thomson Wehr] sind aus konstruktiven Gründen für sehr kleine Durchflüsse (…) bestens geeignet." Vgl. Morgenschweis, S. 356: Hydrometrie.

2.3 Messdatenerfassung und Übertragung

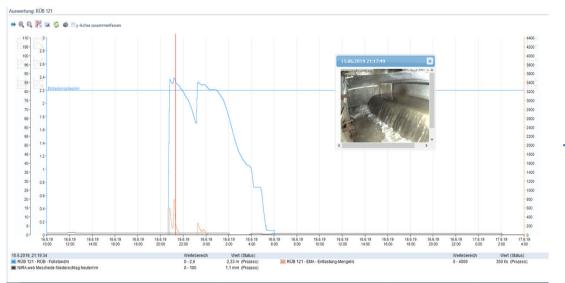


EMA-Prüfstand


HST

2.4 Prüfstand

HST SYSTEMATICAL NILLY


2.4 Prüfstand

Wie werden die Aufzeichnungen ausgewertet?

2.4 Messdatenauswertung und Protokollierung

Bericht

Zusammenfassung

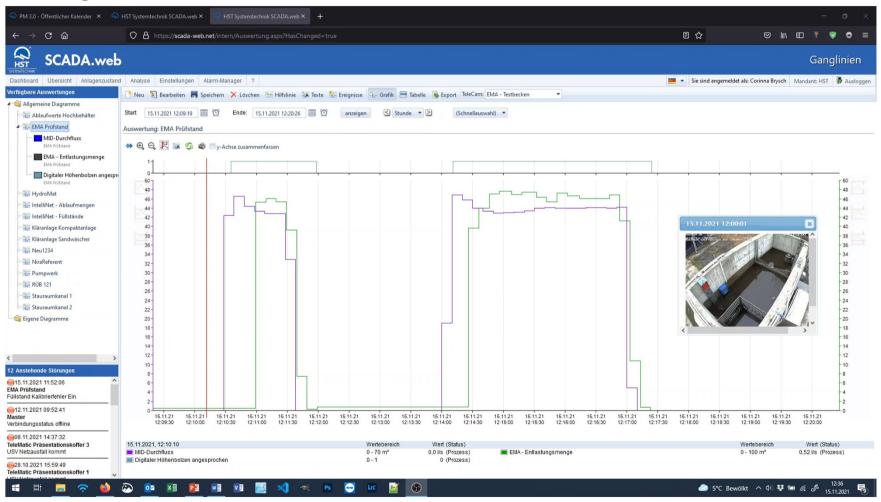
Montag, 15. November 2021

Ereignisprotokoll Monatsbericht Oktober 2021 EMA Prüfstand Meschede

Einstau
Effassung über Messung
Signal
Einstauhöhe 0,5 m
Hysberese 0 Sek.
Beckenüberlauf
Erfassung über Messung
Signal Füllstand Radarsonde
Einstauhöhe 0,7 film

20 l/s

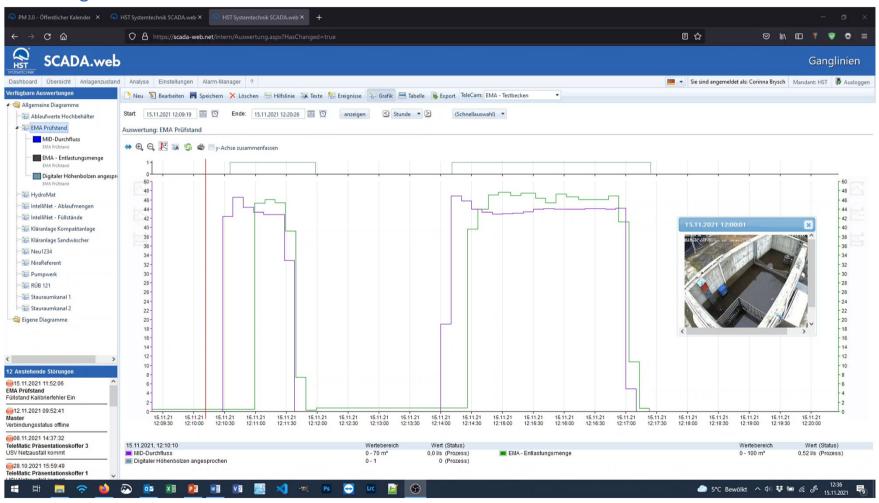
genehm. Ablaufmenge


Zusammenfassung

Einstauereignisse	Anzahl		56 n			
	Dauer		94:00 hh:mm			
	max. Einstai	univeau	1,58 m			
	max. Einstau	uvolumen	0 m ³			
	max. Füllgra	ıd	0 %			
Entlastungsereignisse	ΚÜ	Anzahl	0 n			
		Dauer	0 hh:mm			
		Menge	0 m ³			
	BU	Anzahl	26 n			
		Dauer	48:13 hh:mm			
		Menge	948,66 m³			
	Gesamt	Anzahl	26 n			
		Dauer	48:13 hh:mm			
		Menge	948,66 m³			
Ablauf zur Kläranlage	Menge im Be	erichtszeitraum	0 m ³			
Ablauf zur Kläranlage	Menge wäh	rend Einstau	0 m ³			

HST SYSTEMTECHNIK

2.4 Messdatenauswertung und Protokollierung


EMA Auswertung - Grafisch

HST SYSTEMTECHNIK

2.4 Messdatenauswertung und Protokollierung

EMA Auswertung - Grafisch

HST

2.4 Messdatenauswertung und Protokollierung

EMA Auswertung - Berichtsformen

Zusammenfassung

Montag, 15. November 2021

Ereignisprotokoll

Monatsbericht Oktober 2021 EMA Prüfstand Meschede

Elnstau

Erfassung über Messung Signal Füllstand Radarsonde Einstauhöhe 0,5 m Hysterese 0 Sek.

Hysterese ckenüberlauf Erfassung über

rfassung über Messung Signal Füllstand Radarsonde Signal Füllstand Radarsonde O,716 m Hysterese 5 Sek.

Hysterese genehm. Ablaufmenge

Zusammenfassung

Einstauereignisse	Anzahl		56 n		
	Dauer		94:00 hh:mm		
	max. Einstau	ıniveau	1,58 m		
	max. Einstau	volumen	0 m ³		
	max. Füllgrad		0 %		
Entlastungsereignisse	ΚÜ	Anzahl	0 n		
		Dauer	0 hh:mm		
		Menge	0 m ³		
	BU	Anzahl	26 n		
		Dauer	48:13 hh:mm		
		Menge	948,66 m³		
	Gesamt	Anzahl	26 n		
		Dauer	48:13 hh:mm		
		Menge	948,66 m³		
Ablauf zur Kläranlage	Menge im Be	erichtszeitraum	0 m ³		
Ablauf zur Kläranlage	Menge wäh	rend Einstau	0 m ³		

Regenbecken Ereignisbericht

Vorteile:

- + verschiedene Berichtsformen
- + Exportmöglichkeiten in z.B. Excel, PDF
- + Zeiteinsparung durch automatisch generierten Berichten

HST

2.4 Messdatenauswertung und Protokollierung

EMA Auswertung - Berichtsformen

 Berichtsjahr
 2020

 Bezeichnung des Betriebs
 Meschede

 Bezeichnung der Anlage
 RÜB

 Nr. der Entlastungsanlage
 001

Eigenüberwachung der Entlastungsanlage	Wert	Eingabe
Bemerkung allgemein	Text	keine Bemerkung
Automatische Entlastungsmesseinrichtung vorhander	ja/nein	ja
Funktionskontrolle an maschinellen Einrichtungen	Anzahl	-
Funktionskontrolle an messtechnischen Einrichtungen	Anzahi	1
Uberprüfung Messgenauigkeit	ja/nein	ja
Wo geprüft	Auswahl	intern
Geprüft von	Name	Brysch
Geprüft am	Datum	19.02.2021
Uberprüfung Drosselabflusseinstellung	ja/nein	nein
Wo geprüft	Auswahl	
Geprüft von	Name	
Geprüft am	Datum	
Mängel an messtechnischen Einrichtungen	Text	keine Bemerkung
Mängel an maschinellen Einrichtungen	Text	keine Bemerkung

DABay (Datenverbund Abwasser Bayern) Bericht

	Niederschlag	Beckeneinstau		Entlastungshäufigkeit		Entlastungsdauer		Entlastungsvolumen	
		Dauer	Tage mit	Klärüberlauf	Beckenüberlauf	Klärüberlauf	Beckenüberlauf	Klärüberlauf	Beckenüberlauf
	[mm]	[h]	[d]	[d]	[d]	[h]	[h]	[m³]	[m³]
Januar	36,64	0,00	0	0	0	0,00	0,00	0,00	0,00
Februar	98,60	33,02	4	0	3	0,00	24,34	0,00	70,61
März	37,58	0,00	0	0	0	0,00	0,00	0,00	0,00
April	39,80	15,97	1	0	0	0,00	0,00	0,00	0,00
Mai	98,30	12,10	3	0	3	0,00	7,99	0,00	84,25
Juni	69,07	4,53	1	0	1	0,00	0,71	0,00	69,07
Juli	61,59	0,00	0	0	0	0,00	0,00	0,00	0,00
August	38,13	0,00	0	0	0	0,00	0,00	0,00	0,00
September	98,60	3,58	1	0	1	0,00	1,52	0,00	55,85
Oktober	60,47	0,00	0	0	0	0,00	0,00	0,00	0,00
November	70,35	0,00	0	0	0	0,00	0,00	0,00	0,00
Dezember	77,27	14,58	2	0	2	0,00	10,58	0,00	60,85
Jahrewert	786,4	83,78	12	0	10	0,00	44,43	0,00	340,63

HST SYSTEMATECHNIK

2.4 Prüfstand

2.5 Praxisanwendungen

HST SYSTEMTECHNIK

Anlage: RÜB Lebach

Applikation: Ablaufmengenerfassung RÜB an fester Wehrschwelle

Besonderheiten: Hochgenaue Auswertung von geringen Ablaufmengen

RÜB Lebach - Entlastungsereignis

RÜB Lebach - Messstelle

2.5 Praxisanwendungen

Anlage: Görisried

Applikation: Hochwasserrückhaltebecken

Besonderheiten: Hochgenaue Auswertung

HST SYSTEMTECHNIK

2.5 Praxisanwendungen

Anlage: Flughafen Hamburg

Applikation: Durchflussmessung von Oberflächen- und Regenwasser, hier Kombination

Durchflussmessung im offenen Gerinne und Überlaufmessung an fester Schwelle

Besonderheiten: Erkennung Ablaufart über Schieberstellungen (integrierte SPS-Funktionalität)

2.6 Auslegung EMA

1. Unterstützung beim Fördermittelantrag?

2. Anwendungsbereich?

3. Schwellenlänge?

4. Schwellenprofil?

5. Wasserspiegel?

Wir beraten Sie gerne

Oliver Cuntz

Vertriebsleiter Technisches Büro Mitte-Süd mailto: Oliver.Cuntz@hst.de Tel./Fax: +49 6120 91997-81 / +49 291 7691

Mobil: +49 175 2252000

Corinna Brysch

Produktmanagement IT& Automation mailto: Corinna.Brysch@hst.de Tel./Fax: +49 291 9929-75 / +49 291 7691 Mobil: +49 152 55227075